

Concepts

Facts on Addresses

IPv6 Courses

©G6 Association

December 20, 2010

©G6 Association

December 20, 2010

1 / 30

Table of Contents

Concepts

Facts on Addresses

Concepts

Pacts on Addresses

©G6 Association December 20, 2010 2 / 39

Facts on

- Group of IPv6 actors in France (researchers, engineers...)
- Academic & industrial partners
 - CNRS, Institut TELECOM, INRIA, Universities...
 - AFNIC, 6Wind, Bull. . .
- Launched in 1995 by:
 - Alain Durand
 - Bernard Tuy
- Is today a legal association under French Law (1901)
 - Laurent Toutain, President
- For further information: http://www.g6.asso.fr/

©G6 Association

December 20, 2010

3 / 30

G6Charter

Concepts

Facts on Addresses

- Share experience gained from IPv6 experimentations and deployment
- Spread IPv6 information
 - Tutorials and trainings (ISPs, Engineers, netadmins...)
 - Online book (in French), "IPv6, Théorie et pratique": http://livre.g6.asso.fr/
- Initiate research activities around IPv6
- Active in RIPE & IETF working groups
- Promotion of IPv6: French Task Force

© G6 Association December 20, 2010 4 / 39

Hypertext Symbols

Facts on

- Several symbols are used in this document:
 - All RFCs and Internet Drafts are hypertext links.
 - Check that there is no more recent version of the document.
 - is a link to a *Techniques de l'Ingénieur* article on the subject (in French, access may be restricted).
 - is a link to the online edition of *IPv6*, *Théorie et Pratique* (in French)
 - Wis a link to other information on the web.
- Material concerning IPv6 is taken from the G6 tutorial and copyrighted from G6.

© G6 Association December 20, 2010 5 / 39

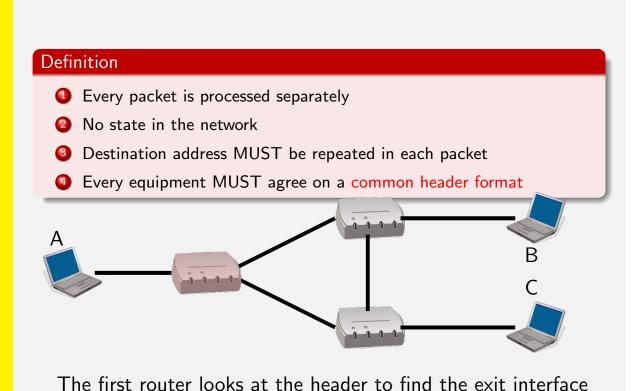
Concepts

Datagram

What Is A Datagram

Datagram
Addresses
Facts on

Definition 1 Every packet is processed separately 2 No state in the network 3 Destination address MUST be repeated in each packet 4 Every equipment MUST agree on a common header format A sends a packet to B

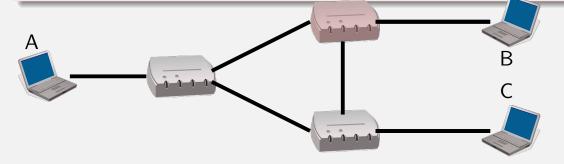

December 20, 2010

What Is A Datagram

©G6 Association

Concepts
Datagram
Addresses
Facts on

©G6 Association December 20, 2010 7 / 39



What Is A Datagram

Datagram

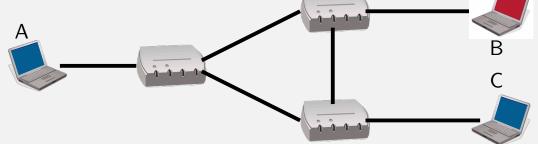
Definition

- Every packet is processed separately
- No state in the network
- Oestination address MUST be repeated in each packet
- 4 Every equipment MUST agree on a common header format

The second router looks at the header to find the exit interface

©G6 Association

December 20, 2010 7 / 39

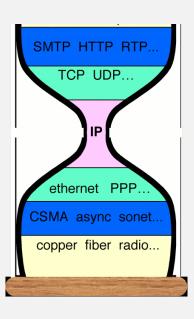


What Is A Datagram

Datagram

Definition

- Every packet is processed separately
- No state in the network
- O Destination address MUST be repeated in each packet
- Every equipment MUST agree on a common header format


B accepts the packet

©G6 Association December 20, 2010

IP Layer

Concepts
Datagram
Addresses
Facts on

- IP is kept simple
 - Forwards packet towards destination
- IP on everything
 - Adapt IP protocol on every layer 2
- Everything on IP
 - Write applications to use IP layer (through L4: TCP, UDP)
- IP must facilitate network interconnection
 - Avoid ambiguities on addresses

Whttp://www.ietf.org/proceedings/01aug/slides/plenary-1/index.html Steve deering, Watching the Waist of the Protocol Hourglass, IETF 51, London

©G6 Association


December 20, 2010

8 / 39

Destination Address Processing

Datagram Addresses Facts on

The destination address must be easily accessible:

- Fixed location
- Fixed size
- Aligment in memory

RFC 791 (Sept 1981)

Addresses are fixed length of four octets (32 bits)

© G6 Association December 20, 2010 9 / 39

IPv4 address allocation (originally)

Concepts
Datagram
Addresses
Facts on

+-+-+-		+-+-+-+-+	-+-+-+-	+-+-+-+-+-+-	-+-+		
101	NETWORK	Local Ad	Local Address			${\tt Class}$	Α
+-							
+-							
1 0	NETWORK	1	Local Ad	ldress	- 1	Class	В
+-+-+-		+-+-+-+-+	-+-+-+-	+-+-+-+-+-+-	-+-+		
+-+-+-		+-+-+-+-+	-+-+-+-	+-+-+-+-+-	-+-+		
11 1 0	NETWOR:	K		Local Addres	ss	Class	C
+-+-+-		+-+-+-+-+	-+-+-+-	+-+-+-+-+-+-	-+-+		

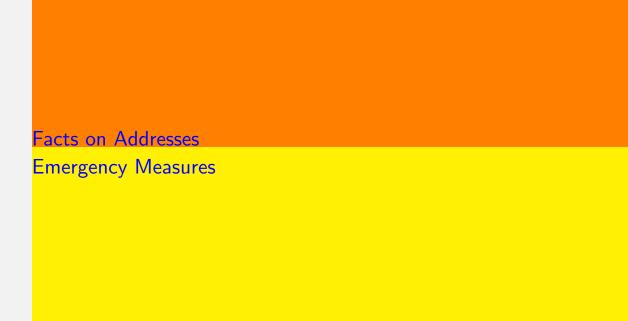
- The address is split into two parts:
 - Network part
 - Host part
- Initially the boundary was given by a prefix
 - 3 boundaries called classes
 - 1 class (D) for mutlicast added later
 - 1 class (E) reserved (never used)
- An authority used to give unique prefix to sites
- This plan was developed to guarantee address uniqueness

©G6 Association December 20, 2010 11 / 39

Facts on Addresses
Historical view

Historical facts

Concepts


Facts on Addresses Historical view Emergency Measures NAT Prefixes delegation

- 1983 : Research network for about 100 computers
- 1992 : Commercial activity
 - Exponential growth
- 1993 : Exhaustion of the class B address space
 - Allocation in the class C space
 - Require more information in routers memory
- Forecast of network collapse for 1998!
 - 1999 : Bob Metcalfe ate his Infoworld 1995 paper where he made this prediction

©G6 Association December 20, 2010 13 / 39

Emergency Measures: Better Addresses Management

Concepts

Facts on Addresses Historical view Emergency Measures NAT Prefixes delegation IPv4 routing

RFC 1517 - RFC 1520 (Sept 1993)

- Ask the internet community to give back allocated prefixes (RFC 1917)
- Re-use class C address space
- CIDR (Classless Internet Domain Routing)
 - $\bullet \ \ \mathsf{network} \ \ \mathsf{address} = \mathsf{prefix}/\mathsf{prefix} \ \mathsf{length}$
 - less address waste
 - recommend aggregation (reduce routing table length)
- Introduce private prefixes (RFC 1918)

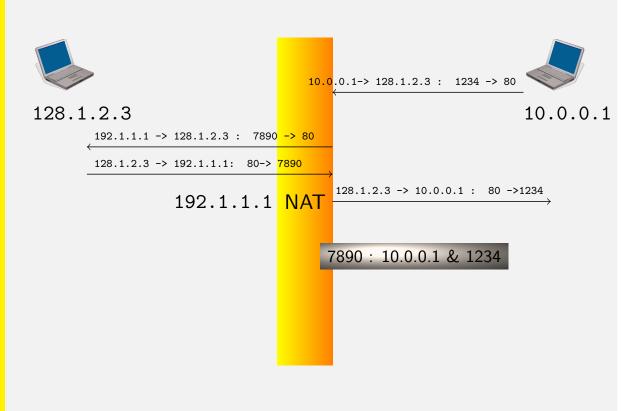
©G6 Association December 20, 2010 15 / 39

Emergency Measures: Private Addresses (RFC 1918 BCP)

Concepts

Facts on
Addresses
Historical view
Emergency
Measures
NAT
Prefixes
delegation
IPv4 routing

- Allow private addressing plans
- Addresses are used internally
- Similar to security architecture with firewalls
- Use of proxies or NAT to go outside
 - RFC 1631, RFC 2663 and RFC 2993
- NAPT is the most commonly used of NAT variations


©G6 Association December 20, 2010 17 / 39

How NAT with Port Translation Works

Concepts

Facts on
Addresses
Historical view
Emergency
Measures
NAT
Prefixes
delegation
IPv4 routing
table analysis

December 20, 2010

18 / 39

NAT Impact

©G6 Association

Concepts

Facts on Addresses Historical view Emergency Measures NAT Prefixes delegation

first consequence

The application does not know its public name.

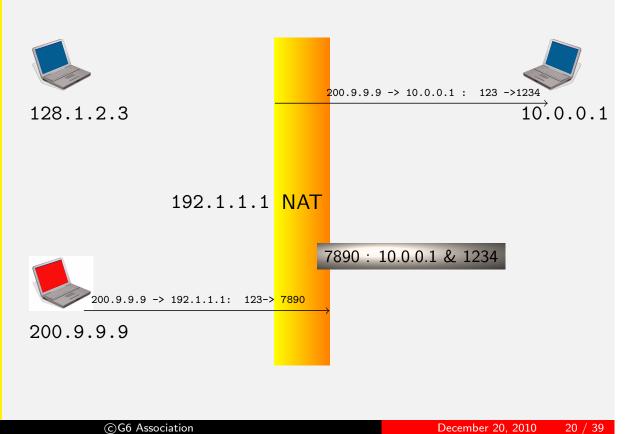
second consequence

It is difficult to contact a NATed equipment from outside

- Security feeling
- Solutions for NAT traversal exist

third consequence

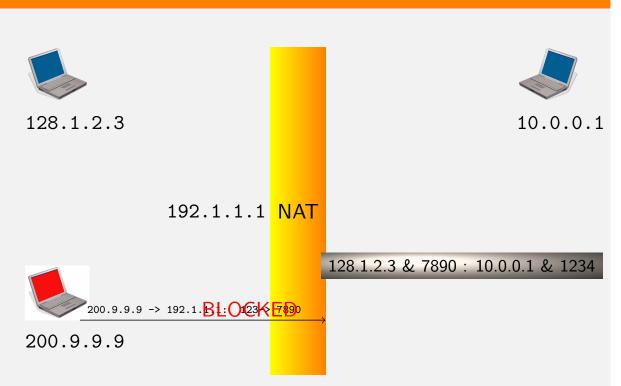
There is no standardized behavior for NAT yet


©G6 Association December 20, 2010 19 / 39

Conic NAT

Concepts

Facts on Addresses Historical view Emergency Measures NAT Prefixes delegation IPv4 routing table analysis

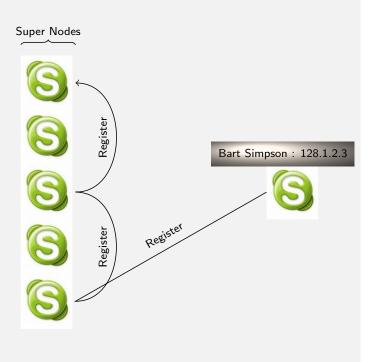


Restricted NAT

Concepts

Facts on Addresses Historical view Emergency Measures NAT Prefixes delegation IPv4 routing table analysis

©G6 Association December 20, 2010 21 / 3


Concepts

Facts on

Historical view Emergency Measures NAT

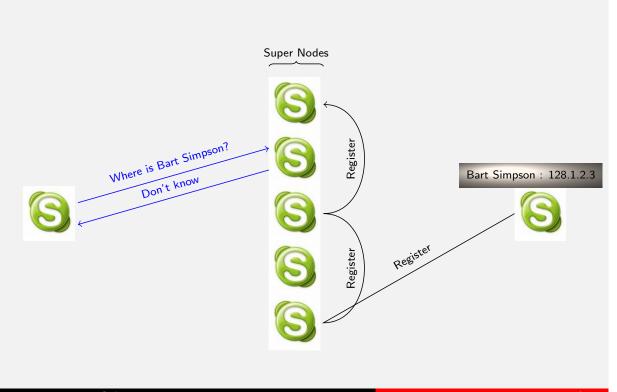
Prefixes delegation

©G6 Association

December 20, 2010

22 / 39

NAT Traversal and Peer To Peer


Concepts

Facts on

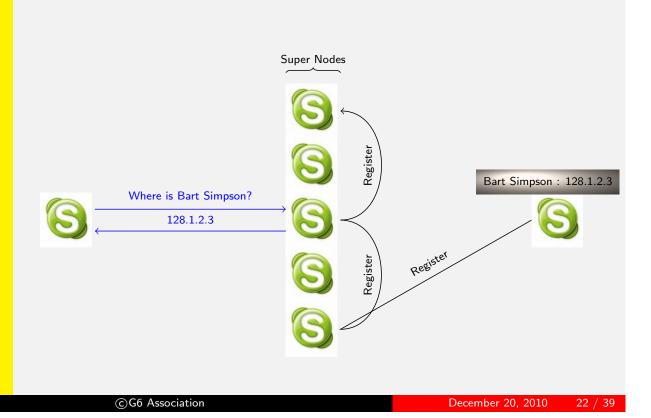
Emergency Measures NAT

Prefixes delegation

delegation
IPv4 routing
table analysis

© G6 Association December 20, 2010 22 / 39

Concepts


Facts on

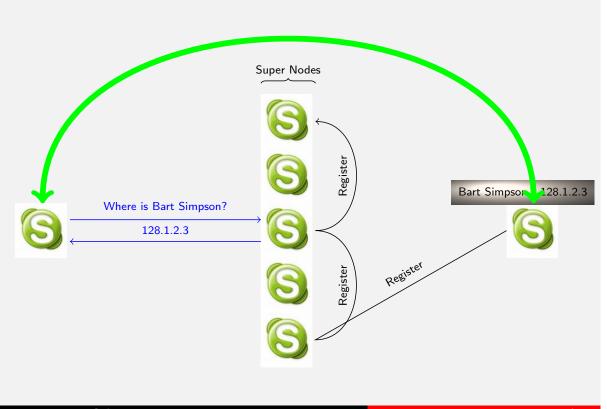
Emergency Measures

NAT

Prefixes delegation

IPv4 routing table analysis

NAT Traversal and Peer To Peer


Concepts

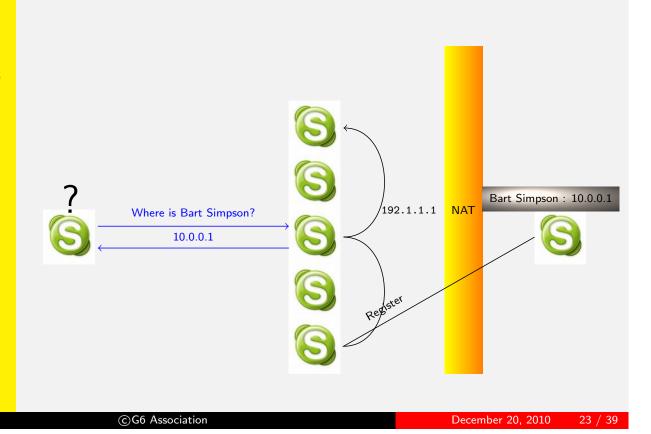
Facts on Addresses

Historical viev Emergency Measures

NAT
Prefixes
delegation

IPv4 routing table analysis

©G6 Association December 20, 2010 22 / 3


Concepts

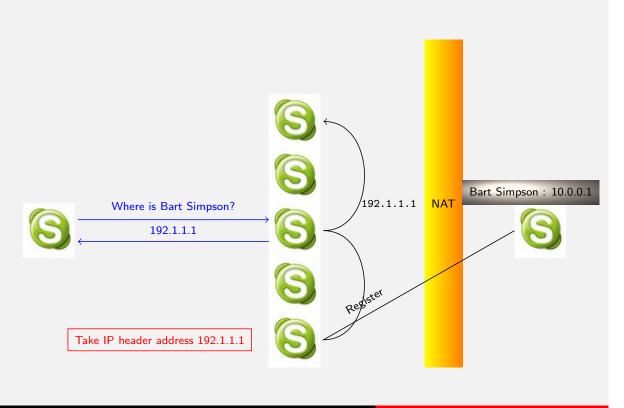
Facts on

Historical view Emergency Measures NAT

Prefixes delegation

IPv4 routing

NAT Traversal and Peer To Peer


Concepts

Facts on

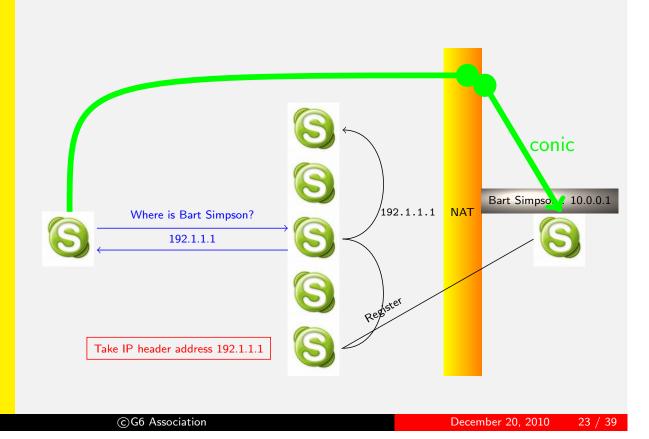
Historical view Emergency

NAT Prefixes

IPv4 routing table analysis

© G6 Association December 20, 2010 23 / 39

Concepts


Facts on

Historical view Emergency Measures

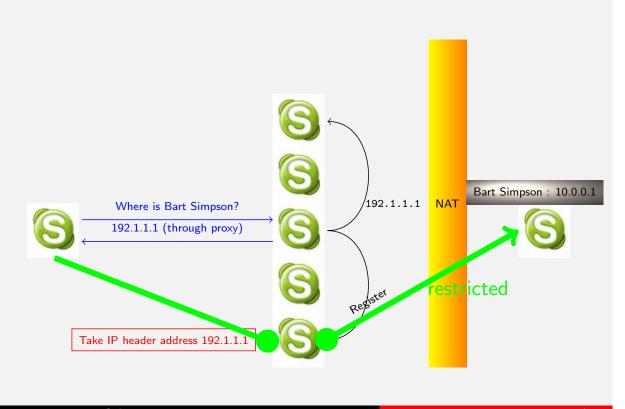
NAT

delegation

IPv4 routing

NAT Traversal and Peer To Peer

Concepts


Facts on

Historical viev Emergencv

NAT

Prefixes delegation

IPv4 routing table analysis

© G6 Association December 20, 2010 23 / 39

Facts on Addresses Prefixes delegation

What Has Changed

Concepts

Addresses
Historical view
Emergency
Measures
NAT
Prefixes
delegation

Classful Addressing

- Ensure uniqueness
- Pacilitate administrative allocation
 - One central entity

Class-Less (CIDR)

- Facilitate administrative allocation (hierarchical)
 - Nowadays 5 regional entities
- 2 Facilitate host location in the network
- 3 Allocate the minimum pool of addresses

© G6 Association December 20, 2010 25 / 39

CIDR Administrative Point of View

Concepts

Addresses
Historical view
Emergency
Measures
NAT
Prefixes
delegation
IPV4 routing

- A hierarchy of administrative registries
 - IANA/ICANN at the top
- 5 Regional Internet Registries (RIR)
 - APNIC (Asia Pacific Network Information Centre)
 - ARIN (American Registry for Internet Numbers)
 - LACNIC (Regional Latin-American and Caribbean IP Address Registry)
 - RIPE NCC (Réseaux IP Européens Network Coordination Center)
 - Europe, Middle east.
 - AfriNIC (Africa)
- Providers get prefixes allocation from RIR

©G6 Association

December 20, 2010

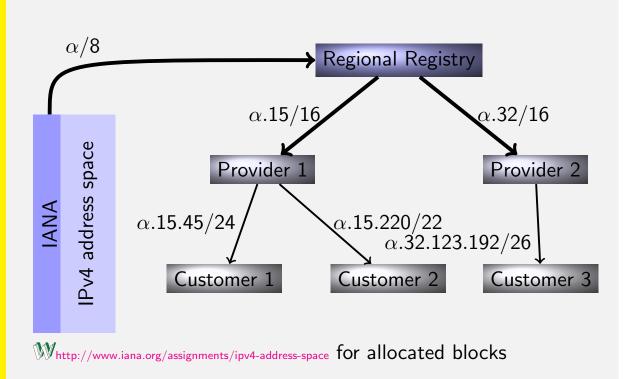
26 / 39

RIR Regions

Concepts

Facts on Addresses Historical view Emergency Measures NAT Prefixes delegation IPv4 routing

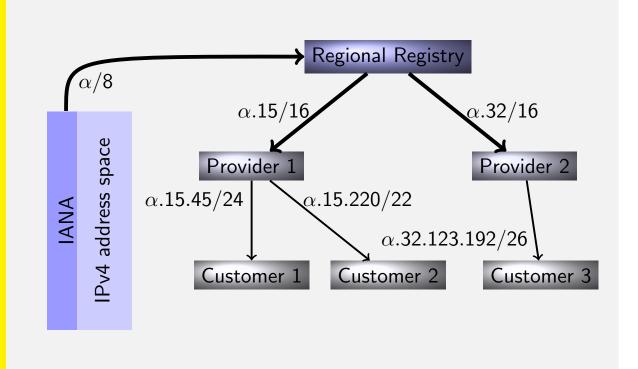
©G6 Association December 20, 2010 27 / 39



Prefixes delegation

Concepts

Facts on Addresses Historical view Emergency Measures NAT Prefixes delegation IPv4 routing table analysis


© G6 Association December 20, 2010 29 / 39

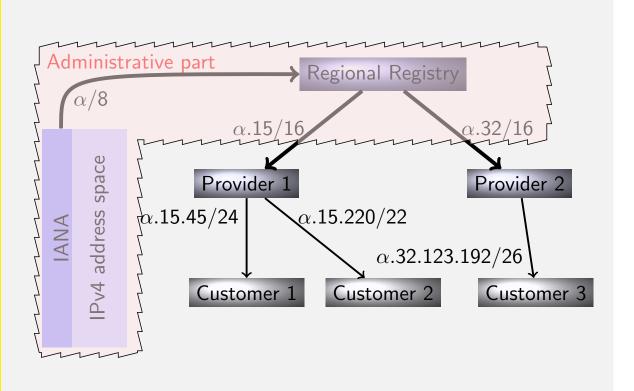
Core Network Routing Table

Concepts

Facts on Addresses Historical view Emergency Measures NAT Prefixes delegation IPv4 routing table analysis

December 20, 2010

30 / 39

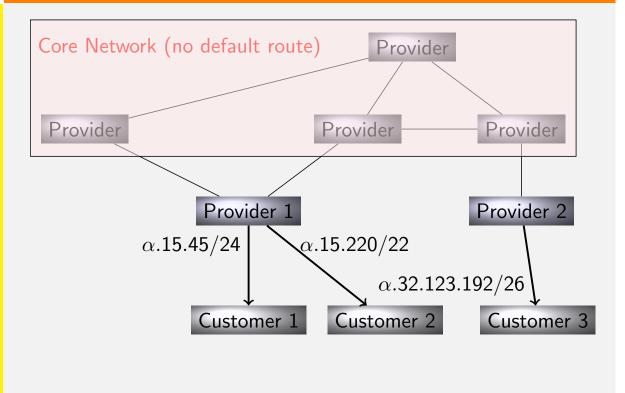


Core Network Routing Table

©G6 Association

Concepts

Facts on
Addresses
Historical view
Emergency
Measures
NAT
Prefixes
delegation
IPv4 routing
table analysis


©G6 Association December 20, 2010 30 / 39

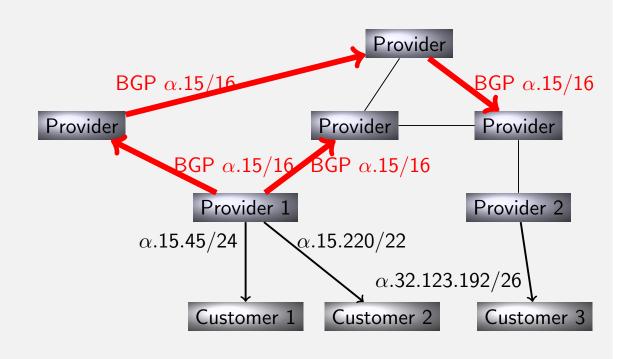
Core Network Routing Table

Concepts

Facts on Addresses Historical view Emergency Measures NAT Prefixes delegation IPv4 routing table analysis

©G6 Association

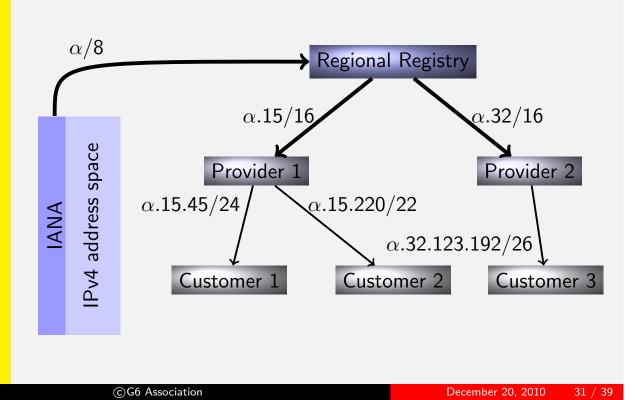
December 20, 2010


30 / 39

Core Network Routing Table

Concepts

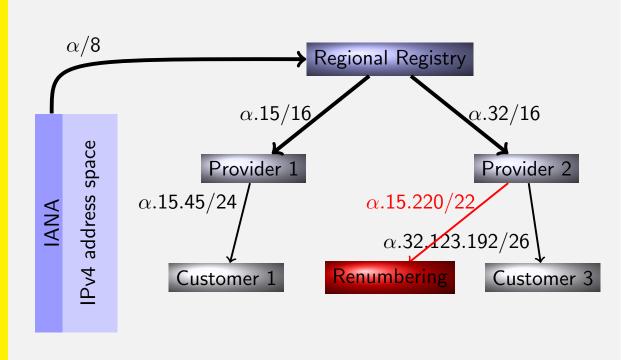
Facts on Addresses Historical view Emergency Measures NAT Prefixes delegation IPv4 routing table analysis


©G6 Association December 20, 2010 30 / 39

Access Provider Change: Difficult

Concepts

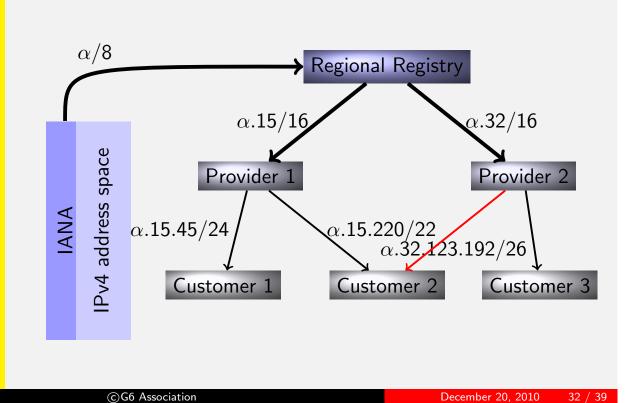
Facts on Addresses Historical view Emergency Measures NAT Prefixes delegation IPv4 routing table analysis



Access Provider Change: Difficult

Concepts

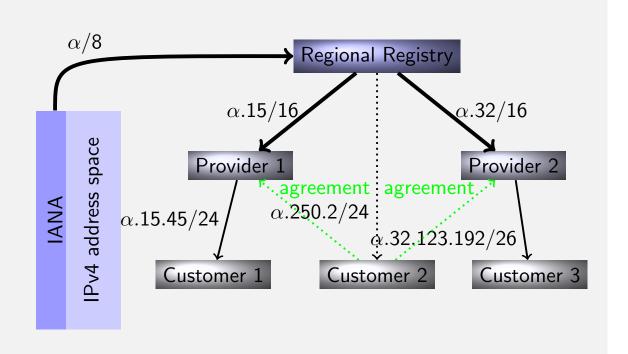
Facts on Addresses Historical view Emergency Measures NAT Prefixes delegation IPv4 routing table analysis


©G6 Association December 20, 2010 31 / 39

Multi-homing: Difficult

Concepts

Facts on Addresses Historical view Emergency Measures NAT Prefixes delegation IPv4 routing table analysis

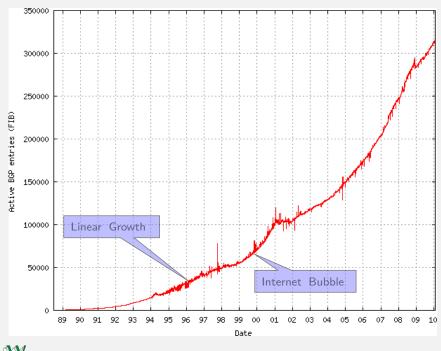


6

Multi-homing: Difficult

Concepts

Facts on Addresses Historical view Emergency Measures NAT Prefixes delegation IPv4 routing table analysis


©G6 Association December 20, 2010 32 / 39

Prefix usage in Feb. 2010

Concepts

Facts on Addresses Historical view Emergency Measures NAT Prefixes delegation IPv4 routing table analysis

 $W_{\rm http://www.cidr-report.org/as2.0}$

©G6 Association

December 20, 2010

33 / 39

Prefix

Concepts

Facts on
Addresses
Historical view
Emergency
Measures
NAT
Prefixes
delegation
IPv4 routing

- CIDR can be viewed as an extension of the netmask concept
- It is called classless since IP addresses are no longer interpreted as belonging to a given Class (A, B, C) based on the value of the 1-4 leading bits
- The prefix length must be added to the 32 bit word to indicate what is the network part.
 - Lookup complexity in the FIB (Forwarding Information Base) is increased:
 - Best prefix match rule

©G6 Association December 20, 2010 34 / 39

HD-Ratio

Concepts

Acts on
Addresses
Historical view
Emergency
Measures
NAT
Prefixes
delegation
IPV4 routing

- How do define if a customer/provider needs more block?
- In a hierarchical addressing plan every single prefix cannot be allocated
- High Density Ratio gives occupation of an addressing plan

Definition [RFC 3194]

 $HD = \frac{\log(\text{number of allocated objects})}{\log(\text{maximum number of allocatable objects})}$

Current HD-Ratio is 0.94! Whttp://www.ripe.net/docs/ipv6policy.html

©G6 Association

December 20, 2010

35 / 39

BGP routing table analysis

Concepts

Addresses
Historical view
Emergency
Measures
NAT
Prefixes
delegation

Some studies show factors inflating IPv4 BGP routing table

AS Multi-homing

Connection to several AS for fault tolerance

- Subset of the announced prefixes can be announced to other ASes
- Add 20% to 30% prefixes to routing table

Load Balancing

Split traffic between different ASes

- announce different subset to ASes
- Add 20% to 25% prefixes to routing table

 \bigcirc G6 Association December 20, 2010 36 / 39

BGP routing table analysis

Concepts

Facts on Addresses Historical view Emergency Measures NAT Prefixes delegation IPv4 routing table analysis

Failure to aggregate

Provider may announce shorter prefixes

- Bad tuning of aggregation rules
- Generate overload of 15% to 20%

Address fragmentation

Ideally one prefix per provider but

- Historical classfull prefixes
- Blocks are requested sequentially
- Fragmentation contributes to more than 75% of the routing table size

T.Bu, Lixin Gao, and Don Towsley, On Characterizing Routing Table Growth, GlobalInternet 2002 http://www-unix.ecs.umass.edu/ Igao/globalinternet2002_tian.pdf

©G6 Association

December 20, 2010

37 / 39

Exhaustion of IPv4 Prefix Pool

Concepts

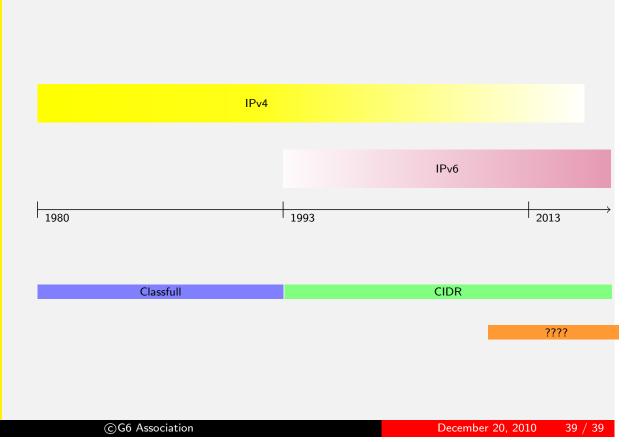
Facts on Addresses Historical view Emergency Measures NAT Prefixes delegation IPv4 routing

Projected Exhaustion Date (December 2010)

- IANA Unallocated Address Pool Exhaustion: March 2011
- RIR Unallocated Address Pool Exhaustion: December 2011

 $\mathbf{W}_{\mathsf{http://www.potaroo.net/tools/ipv4/}}$

©G6 Association December 20, 2010 38 / 39



Addresses versus Packet Format

Concepts

Facts on Addresses Historical view Emergency Measures NAT

IPv4 routing table analysis

