

IPv6 Routing

IPv6 Courses

 $\bigcirc \mathsf{G6}$ Association

December 20, 2010

©G6 Association

December 20, 2010

1 / 57

Table of Contents

IPv6 Routing

©G6 Association December 20, 2010 2 / 57

IPv6 Routing

- Group of IPv6 actors in France (researchers, engineers...)
- Academic & industrial partners
 - CNRS, Institut TELECOM, INRIA, Universities...
 - AFNIC, 6Wind, Bull...
- Launched in 1995 by:
 - Alain Durand
 - Bernard Tuy
- Is today a legal association under French Law (1901)
 - Laurent Toutain, President
- For further information: http://www.g6.asso.fr/

©G6 Association

December 20, 2010

3 / 57

G6Charter

IPv6 Routing

- Share experience gained from IPv6 experimentations and deployment
- Spread IPv6 information
 - Tutorials and trainings (ISPs, Engineers, netadmins...)
 - Online book (in French), "IPv6, Théorie et pratique": http://livre.g6.asso.fr/
- Initiate research activities around IPv6
- Active in RIPE & IETF working groups
- Promotion of IPv6: French Task Force

 \bigcirc G6 Association December 20, 2010 4 / 57

Hypertext Symbols

IPv6 Routing

- Several symbols are used in this document:
 - All RFCs and Internet Drafts are hypertext links.
 - Check that there is no more recent version of the document.
 - is a link to a *Techniques de l'Ingénieur* article on the subject (in French, access may be restricted).
 - is a link to the online edition of *IPv6*, *Théorie et Pratique* (in French)
 - Wis a link to other information on the web.
- Material concerning IPv6 is taken from the G6 tutorial and copyrighted from G6.

© G6 Association December 20, 2010 5 /

Router configuration

IPv6 Routin Concepts & Generality IGP EGP

Router's interface must be manually configured

- assign an address + a prefix length
- routers install automatically in the FIB the prefix assigned to the interface

FIB

Prefix	Next Hop
α	eth0
β	eth1
$\mid \gamma \mid$	eth2
δ	eth3

 \bigcirc G6 Association December 20, 2010 6 / 57

Example: Cisco router

IPv6 Routing
Concepts &
Generality
IGP
EGP
Usage

```
Cisco_showroom# show ipv6 route

IPv6 Routing Table - 7 entries

Codes: C - connected, L - Local, S - Static, R - RIP, B - BGP
U - Per-user Static route, I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea,
IS - ISIS summary, 0 - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1,
OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2

S ::/0 [1/0] via FE80::216:17FF:FE87:A7, Vlan338
C 2001:660:7301:3303::/64 [0/0] via ::, Vlan333
L 2001:660:7301:3308::/64 [0/0] via ::, Vlan338
L 2001:660:7301:3308::/64 [0/0] via ::, Vlan338
L 2001:660:7301:3308:20D:29FF:FE75:43C4/128 [0/0] via ::, Vlan338
L FE80::/10 [0/0] via ::, Null0
L FF00::/8 [0/0] via ::, Null0
....
```

©G6 Association December 20, 2010 7 / 57

Example: Linux

IPv6 Routing Concepts & Generality IGP EGP

netstat -rn ip -6

Table de routage IPv6 du noyau

Destination	Next Hop	Flags	Metric	Ref	Use	Iface
::1/128	::	U	0	6	1	lo
2001:660:7301:3302::/128	::	U	0	0	2	lo
::/0	fe80::213:c4ff:fe69:5f49	UG	1	34532	0	eth1
2001:660:7301:3303::/64	fe80::20d:29ff:fe75:43c4	UG	1024	6708480	0	eth0.338

©G6 Association December 20, 2010 8 / 57

Static route

IPv6 Routin
Concepts &
Generality
IGP
EGP
Usage

Manually configured routes

- simple to configure, but subject to errors (loops)
- cannot find another path if router fails

©G6 Association December 20, 2010

Example: commands

IPv6 Routin Concepts & Generality IGP EGP

- BSD:
 - route add -inet6 default fe80::216:17ff:fe87:a7
 - route add -inet6 2001:660:7301:3305::1 -prefixlen 64 fe80::216:17ff:fe87:a7
- Linux:
 - route -A inet6 add default gw fe80::216:17ff:fe87:a7 dev eth0
 - ip -6 route add default via fe80::216:17ff:fe87:a7/64 dev eth0
- Cisco:
 - ipv6 route ::/0 vlan 338 fe80::216:17ff:fe87:a7
 - ip -6 route add 2001:660:7301:3303::/64 via fe80::20d:29ff:fe75:43c4 dev eth0.338

© G6 Association December 20, 2010 10 / 57

Example: Cisco router

IPv6 Routin Concepts & Generality IGP EGP

```
Cisco_showroom# show ipv6 route
IPv6 Routing Table - 7 entries

Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
0 - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2, U - Per-user Static route

S ::/0 [1/0] via FE80::216:17FF:FE87:A7, Vlan338
C 2001:660:7301:3303::/64 [0/0] via ::, Vlan333
L 2001:660:7301:3303::/1128 [0/0] via ::, Vlan338
C 2001:660:7301:3308::/64 [0/0] via ::, Vlan338
L 2001:660:7301:3308:20D:29FF:FE75:43C4/128 [0/0] via ::, Vlan338
L FE80::/10 [0/0] via ::, Null0
L FF00::/8 [0/0] via ::, Null0
...
```

© G6 Association December 20, 2010 11 / 57

Routing Protocol

IPv6 Routing
Concepts &
Generality
IGP
EGP

Definition

A routing protocol is an application sharing knowledge among routers to construct FIB

- The application may have its own database different from the FIB
- Two families of routing protocol are defined:
 - Interior Gateway Protocol
 - Exterior GAteway Protocol

©G6 Association December 20, 2010 12 / 57

IPv6 Routing
Concepts &
Generality
IGP
EGP
Usage

Interior Gateway Protocol

- Simple configuration (even if protocol can be complex)
- Discover other routers, and exchange information
- E.g, RIPng (Distance Vector), OSPFv3 or IS-IS (Link State)

©G6 Association

December 20, 2010

13 / 57

EGP

IPv6 Routing
Concepts &
Generality
IGP
EGP

Exterior GAteway Protocol

- A lot of controls, nothing is automatically learnt
- Complex configuration to hide or show prefixes
- Used mainly between providers
- Only one protocol used : Border Gateway Protocol (with its extensions: MBGP)

©G6 Association December 20, 2010 14 / 57

Router's behavior

IPv6 Routin
Concepts &
Generality
IGP
EGP
Usage

- All routers have a manual configuration of their interfaces
- Prefixes learnt from this configuration are spread among other routers
- Routers select announcements and add these prefixes in their FIB
- Routing announcements and traffic (forwarding) flow in opposite directions

©G6 Association

December 20, 2010

15 / 57

Pv6 Routin Concepts & Generality IGP EGP Usage

RIPng

©G6 Association December 20, 2010 16 / 57

Distance Vector Algorithm

IPv6 Routin Concepts & Generality IGP EGP

- Very simple algorithm
- Routing Protocol database and FIB are common
 - A cost is just added to each prefix
 - \rightarrow Usually the number of routers to cross
- Current implementation:
 - IPv4: RIPv2 (RFC 1723)
 - IPv6: RIPng (RFC 2080)

©G6 Association

December 20, 2010

17 / 57

Distance Vector Algorithm

IPv6 Routin Concepts & Generality IGP EGP

Principle

Routers periodically broadcast their FIB on each link they are connected to:

- If a router find a new prefix in broadcasted information, ...
- else if an broadcasted prefix as a lower cost than the one already stored
 - This entry is added/changed in the FIB
 - Next Hop is set to the IP address of the broadcasting router
 - Cost is increased by one
- Otherwise the information is ignored

©G6 Association December 20, 2010 18 / 57

Distance Vector Example (Add Route)

IPv6 Routing Concepts & Generality IGP EGP Usage

©G6 Association

December 20, 2010

19 / 57

Distance Vector: Periodic Refreshing

IPv6 Routin Concepts & Generality IGP EGP

- Distance Vector (DV) implies periodic refreshing
 - To discover best path
 - To discover dead routers
- In RIP Routing Table are flooded every 30 seconds
- No specific message to remove an entry
 - If an entry is not seen during X flooding, this entry is removed
 - In RIP X = 3 (90 s)
 - ullet Remove is similar to set cost to ∞
- DV cannot be used if Routing Table contains a lot of entries
 - For instance core network routers may contain 220 000 entries
- DV can only be used in very small networks
- DV have also bad convergence performances...

©G6 Association December 20, 2010 20 / 57

Distance Vector Example (Change Route)

IPv6 Routing Concepts & Generality IGP EGP Usage

©G6 Association

December 20, 2010

21 / 57

Distance Vector Example (Bad Convergence)

IPv6 Routing Concepts & Generality IGP EGP

©G6 Association December 20, 2010 22 / 57

Counter Measures

IPv6 Routing Concepts & Generality IGP EGP

- 3 ways to reduce this impact :
 - $16 = \infty$:
 - Not only 15 routers in the network but :
 - 15 routers between two links
 - Poisoning reverse:
 - When receiving a route marked ∞ , mark it immediately ∞
 - Propagate rapidly route withdraw to avoid wrong routing messages
 - Split Horizon:
 - Do not announce through an interface, routes that use this interface.

©G6 Association

December 20, 2010

23 / 57

Distance Vector Example (Split Horizon)

IPv6 Routir Concepts & Generality IGP EGP

©G6 Association December 20, 2010 24 / 57

Distance Vector: Summary

IPv6 Routing Concepts & Generality IGP EGP Usage

- Distance Vector is very simple to understand, manage, implement.
- Performances are weak:
 - Shortsighted network vision: based on summary made by other routers
 - Like concierges exchanging gossips
 - Can lead to routing loops or long delays to reconnect parts of the network.
 - Periodically all routing table must be sent on the network:
 - to detect dead routers
 - to detect better paths
 - Generates network and processing load
- Distance Vector must be limited to small network auto-configuration
- RIPng implement this algorithm

Route Tag

©G6 Association December 20, 2010

RIPng

IPv6 Routing Concepts & Generality IGP EGP Usage

07	15.	31
Command	Version=1	Unused
	ID 6	0.5
	IPv6	Prefix

- Multicast address: ff02:2::9, UDP Port Number 521
- Next Hop: instead of the source address in the IP header
- Route Tag: Differentiate internal and external routes

© G6 Association December 20, 2010 26 / 57

Pref len

Cost

Securing Routing Protocols

IPv6 Routing Concepts & Generality IGP EGP Usage

- Routing messages can be viewed as configuration messages:
 - Forging wrong routing messages can highjack some traffics
 - announcing default route may block communications

© G6 Association December 20, 2010 27 / 57

Securing Routing Protocol

IPv6 Routir Concepts & Generality IGP EGP Usage

- include a secret password on each message
 - protect from configuration mistakes
 - weak security, since packets can be eavesdropped and secret learnt
- use cryptographic
 - RIPng uses built-in IPsec extentions
 - RIPv2 uses its own mechanisms
 - Originally based on MD5 algorithm (RFC 2082)
 - Obsoleted by RFC 4822, recommending SHA1 algorithm.

©G6 Association December 20, 2010 28 / 57

IPv6 Routing Concepts & Generality IGP EGP Usage

OSPFv3

©G6 Association

December 20, 2010

29 / 57

Link State Algorithm

IPv6 Routin Concepts & Generality IGP EGP Usage

- Distance Vector leads to a shortsighted view of network topology
 - each router processes routing messages
 - split horizon help for the first next hop
 - periodically flush all routing information
 - can be compared to caretaker exchanging gossip!
- Link State Protocols are divided in several states
 - learn network topology
 - exchange/flood local configuration
 - compute shortest path to a destination prefix
 - fill the FIB with Next Hop
 - less traffic, incremental updates
 - More a database synchronization algorithm than a routing protocol
- Two implementations
 - OSPF: v2 for IPv4 and v3 for IPv6
 - IS-IS : IP agnostic

©G6 Association December 20, 2010 30 / 57

Example: Database initialization

IPv6 Routing Concepts & Generality IGP EGP Usage

A cost is associated to each interface (for example related to the speed)

©G6 Association

December 20, 2010

31 / 57

Example: Database state after synchronization

IPv6 Routin
Concepts &
Generality
IGP
EGP
Usage

- After a flooding period (explained latter) all routers have exchanged their information
- Each router has all entries in its database

- Entries are called Link State
- These entries gives a full knowledge of the network topology
- can be viewed as a graph with nodes (router) and vertex (prefixes)
- find the shortest paths from the root (router doing computation) to prefixes
 - based on Dijkstra's algorithm
 - explore the graph always using the shortest path
 - complexity is $O(N^2)$

©G6 Association December 20, 2010 32 / 57

Example: Shortest Path First Algorithm

IPv6 Routing Concepts & Generality IGP EGP Usage

©G6 Association

December 20, 2010

33 / 57

Example: FIB entries

IPv6 Routin Concepts & Generality IGP EGP Usage

©G6 Association December 20, 2010 34 / 57

Warning: SPT is not forwarding path

IPv6 Routing
Concepts &
Generality
IGP
EGP
Usage

Path is different, but cost is the same

 $\bigcirc \mathsf{G6}$ Association

December 20, 2010

35 / 57

reducing SPF computation

IPv6 Routin Concepts & Generality IGP EGP

- SPF algorithm is complex $(O(N^2))$
- every-time a router detect a topology change:
 - change is flooded to all routers
 - All router must rerun SPF algorithm

Definition

A network can be divided into several areas. All OSPF network contains

- A mandatory connexe backbone (Area 0)
- Optional areas, directly connected to the backbone through ABR (Area Border Router)
- ABR belongs to backbone and one (several) area(s)
- ABR sends summary (prefix+cost) of each area to the other ones.

© G6 Association December 20, 2010 36 / 57

Division into Areas

Pv6 Routing Concepts & Generality IGP EGP

©G6 Association

December 20, 2010

37 / 57

Database synchronization

IPv6 Routir Concepts & Generality IGP EGP Usage

- OSPF maintain several kind of record (topological, summary, external prefixes, ASBR,...);
- All routers must share the same information
- Incremental update to reduce the bandwidth
 - compare to RIP, dumping database every 30 seconds
- exchange must be reliable in OSPF
- done is several steps and several protocols:
 - HELLO protocol: discover peers, elect a Designated Router
 - Database description: Describe information contained in each router's database
 - Database exchange: request and transfer information missing or more recent

© G6 Association December 20, 2010 38 / 57

Example: Flooding

IPv6 Routin Concepts & Generality IGP EGP

Link State Announcement Format (RFC 2740)

IPv6 Routin Concepts & Generality IGP EGP Usage

LS Age

The time in seconds since the LSA was originated.

After 40 min a new LS must be generated even if there is no change.

LS Type

The LS type field indicates the function performed by the LSA. The high-order three bits of LS type encode generic properties of the LSA, while the remainder (called LSA function code) indicate the LSA's specific functionality.

LS ID

Together with LS type and Advertising Router, uniquely identifies the ©G6 Association December 20, 2010 40 / 57 LSA III the IIIIK-State database.

LS Type

IPv6 Routing
Concepts &
Generality
IGP
EGP

0		• • • •	16
U	S2	S1	LSA Function Code

U-bit	LSA Handling
0	Treat the LSA as if it had link-local flooding scope
1	Store and flood the LSA, as if type understood

S 2	S1	Flooding Scope
0		Link-Local Scoping. Flooded only on link it is originated on.
0	1	Area Scoping. Flooded to all routers in the originating area
1	0	AS Scoping. Flooded to all routers in the AS
1	1	Reserved

© G6 Association December 20, 2010 41 / 57

LSA function code

IPv6 Routing Concepts & Generality IGP EGP

LSA function code	LS Type	Description
1	0×2001	Router-LSA
2	0×2002	Network-LSA
3	0×2003	Inter-Area-Prefix-LSA
4	0×2004	Inter-Area-Router-LSA
5	0×4005	AS-External-LSA
6	0×2006	Group-membership-LSA
7	0×2007	Type-7-LSA
8	0×0008	Link-LSA
9	0×2009	Intra-Area-Prefix-LSA

© G6 Association December 20, 2010 42 / 57

Link State Announcement Format

Router-LSAs have LS type equal to 0x2001. Each router in an area originates one or more router-LSAs distinguished by their Link-State IDs. Router-LSAs originated by the router describe the state and cost of the router's interfaces to the area.

©G6 Association

December 20, 2010

43 / 57

Example

IGP

```
{ E S 80000002 age 3:09 rtr 10.1.1.1 } 
E S 80000001 age 2:49 sum 10.1.2.0 abr 10.1.1.1 } 
E S 80000003 age 2:44 sum 10.1.100.0 abr 10.1.1.1 } 
E S 80000001 age 2:59 abr 10.1.1.1 rtr 10.1.1.1 } 
S 80000002 age 5 rtr 10.1.1.2 }
     S 80000002 age 5 rtr 10.1.1.2 }
     E S 80000002 age 3:09 rtr 10.1.1.1 E S 80000001 age 2:49 sum ... }
E S 80000003 age 2:44 sum ... }
E S 80000001 age 2:59 abr... }
 10.2.1.0/24
                                                10 1 1 2
                                                                                                                                             10.1.1.1
10.1.1.1 > 224.0.0.5: OSPFv2-hello 44:
                    area 0.0.0.1 E mask 255.255.255.0 int 10 pri 5 dead 40 dr 10.1.1.1
      • One router (IP address: 10.1.1.1) on 10.1.1.0/24 link
      network is in area 1
```

 After 40s a router is supposed dead ©G6 Association

December 20, 2010

Hello period is 10s

router knows no neighbor

IPv6 Routing Concepts & Generality IGP EGP Usage

IS-IS

©G6 Association

December 20, 2010

45 / 57

Intermediate System to Intermediate System

IPv6 Routin Concepts & Generality IGP EGP

- Originally designed to route OSI Datagram protocol CLNP (Connection Less Network Protocol)
- Adapted to route both CLNP and IPv6 protocol.
- IS-IS don't use IP to carry routing messages
- Based on Shortest Path First algorithm to compute routes
 - OSPF derived from IS-IS, but was claim to be Open.
 - now-days IS-IS is also a IETF working group
- IS-IS is still widely used in provider backbones

©G6 Association December 20, 2010 46 / 57

Areas versus Levels

IPv6 Routing
Concepts &
Generality
IGP
EGP
Usage

©G6 Association

December 20, 2010

47 / 57

IPv6 Routing Concepts & Generality IGP EGP Usage

MPLS

©G6 Association December 20, 2010 48 / 57

MPLS: Multi Protocol Label Switching

IPv6 Routing Concepts & Generality IGP EGP Usage

- Goal:
 - Use routing protocols as a signaling plane
 - Switch the data plane
 - Use of virtual path called Label Switched Path
 - A switching table: Next Hop Label Forwarding Element
 - Offer more flexibility for traffic engineering
- LDP Label Distribution Protocol convert IGP routing into LSP
- RSVP-TE can be used to by-pass IGP routing and assign bandwidth

MPLS: Multi Protocol Label Switching

IPv6 Routin Concepts & Generality IGP EGP

- Multi Protocol :
 - Layer 2
 - Any layer 2 with VPs like ATM, Frame Relay
 - Point-to-Point Networks
 - Ethernet
 - Extension for Optical Networks (GMPLS)
 - Layer 3
 - Forwarding is under Layer 3
 - IPv4 (with public or private addresses), IPv6
 - Ethernet / Bridging
- Done by hardware: more efficient than an IP tunnel.

© G6 Association December 20, 2010 50 / 57

Label Format [RFC3032]

IPv6 Routing Concepts & Generality IGP EGP

- ATM and Frame relay: Label in copied in the VPI/VCI or DLCI
- Ethernet: Ethertype 8847 (Unicast), 8848 (Multicast)
- PPP: protocol: 281 (Unicast), 282 (Multicast)
- Label can be :
 - per platform: unique for each LSR
 - per interface: unique for one interface (may be reused elsewhere)
 - Special labels :
 - 0: IPv4 Explicit NULL Label = POP and forwarding
 - 2: IPv6 Explicit NULL Label = POP and forwarding
 - 3: Implicit NULL Label = POP
 - 14: OAM Alert Label [RFC3429]

©G6 Association

December 20, 2010

51 / 57

switching example

IPv6 Routing Concepts & Generality IGP EGP

©G6 Association December 20, 2010 52 / 57

How to build FEC and LIB?

IPv6 Routin Concepts & Generality IGP EGP

- Manually
- Using Label Distribution Protocol
 - works with an IGP (prefix discovery and route selection)
 - two label distribution modes :
 - independent : each LSR works independently on FEC
 - ordered : downstream LSR has to establish the FEC first
 - two label retention modes :
 - conservative : keep in memory just useful labels
 - liberal : memorize label not useful for the LSP (faster reroute)
- RSVP-TE
 - independent of IGP: allow the provider to force paths and reserve resources
 - allow rerouting in case of link failure
- MP-BGP
 - Dissociate internal routing and external routing
 - VPN, IPv6 over IPv4, IPv4 over IPv6

©G6 Association

December 20, 2010

53 / 57

Example: LDP usage

IPv6 Routing Concepts & Generality IGP EGP Usage

$\alpha \xrightarrow{\beta \xrightarrow{30}} \begin{array}{c} \alpha \xrightarrow{30} \\ \beta \xrightarrow{31} \beta \\ \delta \xrightarrow{32} \beta \\ \delta \xrightarrow{33} \end{array}$ $R2 \xrightarrow{\gamma \xrightarrow{\beta}} \begin{array}{c} 34 \\ \gamma \xrightarrow{\beta} \xrightarrow{35} \\ \delta \xrightarrow{37} \\ \delta \xrightarrow{37} \end{array}$ $R3 \xrightarrow{\beta \xrightarrow{30}} \begin{array}{c} \alpha \xrightarrow{34} \\ \delta \xrightarrow{31} \beta \\ \delta \xrightarrow{31} \beta \\ \delta \xrightarrow{37} \end{array}$ $R3 \xrightarrow{\beta \xrightarrow{31}} \begin{array}{c} \alpha \xrightarrow{34} \\ \delta \xrightarrow{31} \beta \\ \delta \xrightarrow{37} \end{array}$ $R3 \xrightarrow{\beta \xrightarrow{31}} \begin{array}{c} \alpha \xrightarrow{34} \\ \delta \xrightarrow{37} \\ \delta \xrightarrow{37} \end{array}$ $R3 \xrightarrow{\beta \xrightarrow{31}} \begin{array}{c} \alpha \xrightarrow{34} \\ \delta \xrightarrow{37} \\ \gamma \xrightarrow{36} \\ \delta \xrightarrow{37} \end{array}$ $R3 \xrightarrow{\beta \xrightarrow{37}} \begin{array}{c} \alpha \xrightarrow{36} \\ \delta \xrightarrow{37} \\ \gamma \xrightarrow{36} \\ \delta \xrightarrow{37} \end{array}$ $R3 \xrightarrow{\beta \xrightarrow{37}} \begin{array}{c} \alpha \xrightarrow{36} \\ \beta \xrightarrow{37} \\ \gamma \xrightarrow{36} \\ \gamma \xrightarrow{37} \\ \gamma \xrightarrow{36} \\ \delta \xrightarrow{37} \end{array}$									
FIB	R1	$egin{pmatrix} lpha & \longrightarrow {\sf e0} \ eta & \longrightarrow {\sf e1} \end{bmatrix}$		R2	$ \begin{array}{c} \alpha \longrightarrow e0 \\ \gamma \longrightarrow e1 \end{array} $		R3	$ \begin{array}{c} \gamma & \longrightarrow e0 \\ \delta & \longrightarrow e2 \end{array} $	
FEC	R1	$\begin{array}{c} \gamma \longrightarrow \text{e1 3} \\ \delta \longrightarrow \text{e1 3} \end{array}$	32	R2 e0 e6	$\begin{array}{c} \alpha & \longrightarrow 30 \\ \beta & \longrightarrow 31 \\ \gamma & \longrightarrow 32 \\ \delta 30 & \rightarrowtail 33 \end{array}$	24	R R 3≥0	$\begin{array}{c} \alpha & \longrightarrow 40 \\ \beta & \text{EQL2} \\ \beta & \text{EQL2} \\ \delta & \longrightarrow 43 \end{array}$	34 35
Labels LIB	 е	$\begin{array}{c} \alpha \longrightarrow 24 \\ 1\beta 24 \longrightarrow 129 \\ 1\gamma 25 \longrightarrow 129 \\ \delta \longrightarrow 27 \end{array}$)	R R2-1 el e: e:	0.31 o e0.2 0.32 o e 0.33 o e 0.34 o e 0.35 o e	16 17 24 25	R3 e	0 46 → por 0 47 → por	0
					1 37 → e1 4				

©G6 Association December 20, 2010 54 / 57

IPv6 Routing Concepts & Generality IGP EGP Usage

BGP

©G6 Association

December 20, 2010

55 / 57

IPv6 Routing
Concepts &
Generality
IGP
EGP
Usage

What protocol for small and big network?

©G6 Association December 20, 2010 56 / 57

IPv6 Routin Concepts & Generality IGP EGP Usage

How to manage a dual stack network ?

© G6 Association December 20, 2010 57 / 57